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Abstract
We derive several kinetic equations to model the large scale, low Fresnel
number behaviour of the generalized nonlinear Schrödinger (NLS) equation
with a rapidly fluctuating random potential. Depending on the relative scale
of fluctuation in the longitudinal and transverse directions, we classify the
kinetic equations into the longitudinal, the transverse and the isotropic case.
The principal assumption of our derivation is that the rapid fluctuation in the
linear potential does not give rise to rapid oscillations in the modulus of the
wave amplitude. For the longitudinal and the transverse cases we address
two problems, the rate of dispersion and the singularity formation, using the
nonlinear kinetic equations. The main technique is the variance identities
derived for the nonlinear kinetic equations. For the problem of dispersion, we
show that in the longitudinal case the spread scales like (time)3/2 whereas in
the transverse case the spread is linearly proportional to time. For the problem
of singularity formation, we show that the collapse conditions in the transverse
case remain the same as those for the homogeneous NLS equation with critical
or supercritical self-focusing nonlinearity whereas in the longitudinal case the
small-scale medium fluctuations tend to enhance the energy of the system and
thus raise the energy barrier to wave collapse.

PACS numbers: 02.30.Sa, 05.45.Mt, 46.65.+g

1. Introduction

The cubic nonlinear Schrödinger (NLS) equation is a prototypical nonlinear wave equation
arising in diverse fields from nonlinear fibre optics to plasma physics to the Bose–Einstein
condensation and many others [18]. In this paper, we consider the generalized NLS equation
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with a random potential

i
∂

∂z
�(z, x) +

γ

2
�x�(z, x) + γ −1g|�|2σ�(z, x) + µV (zLz, xLx)�(z, x) = 0,

x ∈ R
d , σ > 0 (1)

where γ = Lz

/(
kL2

x

)
is the Fresnel number (k is the carrier wavenumber), µ is the linear

coupling coefficient for the random potential V , which is rescaled by two large parameters Lz

and Lx , and g is the nonlinear coupling coefficient with g > 0 representing the self-focusing
(attractive) case and g < 0 is the self-defocusing (repulsive) case. Here σ is a positive
constant and σ = 1 corresponds to the cubic NLS equation. We are particularly interested in
the regime of low Fresnel number γ � 1 with a rapidly oscillating potential Lx,Lz, µ � 1.
The timelike variable z is the longitudinal coordinate in the direction of wave propagation and
we will refer to it as ‘time’ in what follows while we will refer to the transverse coordinates
x ∈ R

d as the space variables. We shall assume the random potential V is a z-stationary,
x-homogeneous Gaussian process whose two-point correlation, and hence the probability
distribution, is uniquely determined by its power spectral density � as in

E[V (z, x)V (z′, x′)] =
∫

eik·(x−x′)eiξ(z−z′)�(ξ, k) dξ dk,

where E stands for the expectation.
Finite-time singularity or wave collapse is a well-known effect for the self-focusing,

(super)-critical (dσ � 2) NLS equation without a random potential [18] when the nonlinear
focusing effect dominates over the linear diffraction effect. Recently it has been proved that
for a white-noise-in-z potential (Lz → ∞, Lx fixed) the solution of NLS equation can still
develop singularity in finite time (see [8] for an elementary proof). Indeed, without the self-
averaging effect of an x-rapidly fluctuating potential the large z-fluctuations in the white-noise
potential may drive the system to a state with low, negative Hamiltonian, thus developing
singularities in finite time. The presence of an x-rapidly fluctuating potential, however, may
still be able to delay or prevent wave collapse or singularity formation. Given the wide range
of scales present in such a question numerical simulation as well as theoretical analysis are
undoubtedly extremely challenging.

In this paper, we consider the generalized NLS with a random potential fluctuating rapidly
but on different scales in the longitudinal and transverse directions and propose several phase-
space model equations corresponding to different longitudinal and transverse scalings. The
main assumption of our derivation is the absence of small-scale fluctuations in the modulus
|�| of the wave amplitude in the scaling limits. In other words, we assume that the rapid
fluctuations of the random potential give rise to rapid fluctuations only in the phase of the
wave amplitude. We then use these kinetic equations to elucidate the problems of dispersion
and singularity formation. The main ingredient of our analysis is the variance identities and
energy law for these kinetic equations which are of independent interest.

The variance identities for the longitudinal case derived in this paper include the ensemble-
averaged variance identities derived in [8] where the white-noise-in-z potential was considered
(see the comments following (39)–(40)). This means that the second moment in x of the
corresponding kinetic model derived here describes the ensemble-averaged second moment
in x of the white-noise-in-z case and provides an indirect evidence for the validity of our
assumption of the absence of small-scale fluctuations in |�|. It is an open question if the same
correspondence exists between the transverse case and the white-noise-in-x case.

We summarize our findings as follows. When the random medium fluctuates much faster
in the transverse direction (the transverse case), the dispersion rate in position is linear in
z for the critical or defocusing nonlinearity. With the focusing interaction the linear-in-z
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behaviour is only an upper and lower bound for the supercritical and subcritical nonlinearity,
respectively. On the other hand, when the random medium fluctuates much faster in the
longitudinal direction (the longitudinal case), the dispersion rate in position is O(z3/2) for the
critical or defocusing nonlinearity. With the focusing interaction the z3/2 behaviour is only an
upper and lower bound for the supercritical and subcritical nonlinearity, respectively.

As a consequence, the small-scale random scattering in the transverse case does not affect
the classical wave-collapse condition in the homogeneous case whereas in the longitudinal
case it tends to raise the energy barrier to collapse.

2. Wigner distribution and Wigner–Moyal equation

Our phase-space model equations for the low Fresnel number regime are based on the Wigner
equations. The Wigner distribution for pure state � is defined as

W(x, p) = 1

(2π)d

∫
e−ip·y�

(
x +

γ y
2

)
�∗

(
x − γ y

2

)
dy (2)

from which the wave amplitude � can be recovered up to a constant phase factor by using

�(x1)�
∗(x2) =

∫
W

(
1

2
(x1 + x2), q

)
exp[iq · (x1 − x2)/γ ] dq.

The Wigner distribution has many useful properties. For instance, partial integration of W

gives rise to the marginal distributions∫
W(x, p) dp = |�(x)|2

∫
W(x, p) dx =

(
2π

γ

)d ∣∣∣∣�̂
(

p
γ

)∣∣∣∣2

.

More generally, integration of W on any hyperplane in the phase space is related to the squared
modulus of the fractional Fourier transform of �.

Consequently, the mean x̄ and variance Vx of x are given by, respectively,

x̄ =
∫

xW(x, p) dx dp,

Vx =
∫

|x − x̄|2W(x, p) dx dp

= Sx − x̄2

where Sx is the second moment of x

Sx =
∫

|x|2W(x, p) dx dp.

The spatial variance Vx measures the dispersion of the wave about its centre of mass x̄.
Also, we have the identity for the flux density

1

2i
(�∇�∗ − �∗∇�) =

∫
R

d

pW(x, p) dp (3)

so that the expression

p̄ =
∫

pW(x, p) dx dp

has the meaning of average momentum. The momentum variance Vp is then defined as

Vp =
∫

|p − p̄|2W(x, p) dx dp = Sp − p̄2
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where Sp is the second moment of p

Sp =
∫

|p|2W(x, p) dx dp.

The momentum variance Vp measures the dispersion of the momentum about its average p̄.
In view of these properties it is tempting to think of the Wigner distribution as a phase-

space probability density, which is unfortunately not the case, since it is not everywhere
non-negative (it is always real-valued though).

It is straightforward to derive the closed-form equation for the Wigner distribution [7]
∂W

∂z
+ p · ∇xW + Uγ W + VW = 0, (4)

with the Moyal operators

Uγ W(x, p) = i
∫

eiq·xγ −1 [W(x, p + γ q/2) − W(x, p − γ q/2)] Û (z, q) dq, U = g|�|2σ

(5)

VW(z, x, p) = iµ
∫

eiq·xLx [Wz(x, p + θq/2) − Wz(x, p − θq/2)] V̂ (zLz, dq), (6)

where Û is the Fourier transform of U and V̂ is the (transverse) spectral measure of the
z-stationary, x-homogeneous random field V . V̂ is related to the (transverse) power spectral
density �0 as follows:

E[V̂ (z, dp)V̂ (z, dq)] = δ(p + q)�0(p) dp dq.

The transverse power spectrum density in turn is related to the full power spectrum density
�(w, p) in the following way:

�0(p) =
∫

�(w, p) dw.

Without loss of generality we may assume

�(w, p) = �(−w, p) = �(w,−p) = �(−w,−p). (7)

Note that the operator Uγ has the following formal geometrical optics limit as γ → 0:

Uγ W(x, p) −→ U0W(z, x, p) ≡ ∇xU · ∇pW(x, p)

would be important for the derivation of the kinetic equations later.
One advantage of working with equation (4) is that one can use it to evolve the mixed-

state initial condition, instead of the pure-state one given in (2). This is important in the
context of modelling quantum open systems. The mixed-state Wigner distribution is a convex
combination of the pure-state Wigner distributions (2). The main advantage in the present
context, however, lies in the relative ease of dealing with any low Fresnel number behaviour
γ → 0.

Let {�α} be a family of L2 functions parametrized by α which is weighted by a probability
measure P(dα). Denote the pure-state Wigner distribution (4) by W [�]. A mixed-state
Wigner distribution is given by∫

W [�α]P(dα). (8)

The limits as γ → 0 of the mixed state Wigner distributions constitute the so-called Wigner
measures which are always positive [11, 12, 14]. Evolution by equation (4) preserves the
form (8). In particular, for such initial data we have∫

W(z, x, p) dp � 0, ∀ x ∈ R
d (9)
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W(z, x, p) dx � 0, ∀ p ∈ R

d . (10)

Multiplying (4) by W and integrating by parts we also see that the evolution preserves the
L2(R2d)-norm of W , i.e.

∂

∂z

∫
|W |2 dx dp = 0.

3. Radiative transfer limits and kinetic equations

We consider the whole family of scaling limits, called the radiative transfer limits, which are
roughly defined as γ → 0, Lz, Lx → ∞, and further distinguished by whether

θ ≡ lim
γ→0

γLx = 0 or a positive number (11)

as well as the relative size of Lz and Lx . This, of course, is not sufficient to ensure the existence
of scaling limit until we specify the strength of V and its mixing property.

3.1. Linear kinetic equations.

First we summarize what has been established in the linear case when U(z, x) is a given
function. In this case we refer to equation (4) with a given U as the linear Wigner–Moyal
(LWM) equation. The principal feature of the scaling is the separation of scales in the given
potential U and the random potential V .

Under the integrability of the maximum correlation coefficient of V (z, ·) as
x-homogeneous-field-valued z-stationary process (among other minor conditions) we proved
in [7, 9] that with the scaling limit (11) the weak solution of the LWN equation converges in
probability to the weak solution of the linear Boltzmann (LB) equation or the linear Fokker–
Planck (LFP) equation, described below, depending on whether θ also tends to zero or not.

Linear Boltzmann equation (θ = 1):

∂

∂z
W(z, x, p) + p · ∇xW(z, x, p) + ∇xU(z, x) · ∇pW(z, x, p)

= 2π

∫
K(p, q)[W(z, x, q) − W(z, x, p)] dq (12)

with a nonnegative kernel K(p, q) given respectively as follows.

(a) If µ ∼ √
Lz,Lx � Lz then

K(p, q) = �(0, q − p). (13)

(b) If µ ∼ √
Lx,Lz � Lx � L

4/3
z , d � 3 then

K(p, q) = δ

( |q|2 − |p|2
2

) [∫
�(w, q − p) dw

]
. (14)

(c) If µ ∼ √
Lz,Lx ∼ Lz then

K(p, q) = �

( |q|2 − |p|2
2

, q − p
)

. (15)
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Linear Fokker–Planck equation (θ → 0):

∂

∂z
W(z, x, p) + p · ∇xW(z, x, p) + ∇xU(z, x) · ∇pW(z, x, p)

= ∇p · D∇pW(z, x, p) (16)

with a symmetric, nonnegative-definite matrix D given as follows.

(a) If µ ∼ θ−1√Lz,Lx � Lz then

D = π

∫
�(0, q)q ⊗ q dq. (17)

(b) If µ ∼ θ−1
√

Lx,Lz � Lx � L
4/3
z , d � 3 then

D(p) = π |p|−1
∫

p·p⊥=0

∫
�(w, p⊥) dwp⊥ ⊗ p⊥ dp⊥. (18)

(c) If µ ∼ θ−1√Lz,Lx ∼ Lz then

D(p) = π

∫
�(p · q, q)q ⊗ q dq. (19)

We shall use L to denote either the scattering operator on the right-hand side of equation (12)
or the diffusion operator on the right-hand side of equation (16). The self-adjoint operator L
is non-positive definite and represents various decoherence effects due to random fluctuations
of the medium; see (21). Let us point out one striking feature of the above family of scaling
limits: the passage is from random, unitary evolution governed by (4) to deterministic, L2-
contracting evolution governed by (12) or (16). This relies on the weak formulation of (4)
which results in self-averaging and irreversibility in the scaling limits.

We refer to regime (a), for either (12) or (16), as the longitudinal case and regime (b) as
the transverse case. Regime (c) is the isotropic, borderline case. We will consider hereafter
only the longitudinal and transverse cases which have a clear-cut dispersion rate.

We note that the restrictions of Lx � L
4/3
z and d � 3 in regime (b) are due to technical

reasons and we believe that they can be lifted off (see [7, 9] for details). Previously it was
shown in [6, 17] (see also [16]) that for a Gaussian potential with θ = 1, Lz = 0 and d � 3,
the mean field EW , converges to (12) (b).

3.2. Nonlinear kinetic equation.

When U = g|�|2σ , the convergence of the above scaling limits is not known. The missing
link, at least at the conceptual level, is the separation of scales of U and V which requires
to show that the fast-scale oscillation of � due to V is present only in the the phase, as V is
real-valued, and hence disappears in U. In other words, we assume that U converges strongly
in the limit. The strong convergence of ρ = |�|2 has been proved for the linear longitudinal
case [15].

Below we shall postulate this scenario of separation of scales and the validity of the above
scaling limits in the nonlinear case with the self-interaction potential U = g|�|2σ . We will
use the resulting nonlinear kinetic equation (12) or (16) to investigate nonlinear wave spread
and singularity in the presence of various random potentials of different scalings. Such a
model with the kernel similar to (14) was considered in [10].

Let us state the nonlinear kinetic equation which we will analyse subsequently:

∂

∂z
W(z, x, p) + p · ∇xW(z, x, p) + U0W(z, x, p) = LW(z, x, p) (20)



Phase space models for stochastic nonlinear parabolic waves: wave spread and collapse 11389

where U0 = ∇xU · ∇p and L is either the linear scattering operator

LW = 2π

∫
K(p, q)[W(z, x, q) − W(z, x, p)] dq

or the linear diffusion operator

LW = ∇p · D∇pW(z, x, p).

The nonlinear kinetic equation (20) preserves the total mass, i.e.

∂

∂z
N = 0, N =

∫
W(z, x, p) dx dp

but in general decreases the L2-norm

∂

∂z

∫
|W |2(z, x, p) dx dp =

∫
WLW dx dp � 0 (21)

because the operator L is non-positive definite. Equation (21) is a form of Boltzmann’s
H-theorem. The inequality (21) expresses certain irreversibility as a result of the weak
convergence of solutions [7]. One can absorb the effect of the total mass N into g by the
obvious rescaling of W in equation (20). Henceforth we assume that

N = 1.

3.3. Initial condition

A natural space of initial data and solutions is the space S of the non-negative measures with
square integrable density W∫

|W |2 dx dy < ∞,

finite Dirichlet form

−
∫

WLW dx dp < ∞
and finite, positive variances Vx, Vp as well as Sx, Sp ∈ (0,∞). In addition, we shall also
assume the initial data to have a finite Hamiltonian H

H = 1

2
Sp − g

σ + 1

∫
ρσ+1 dx ∈ (−∞,∞), ρ(x) =

∫
W dp.

The first term of the Hamiltonian is the kinetic energy and the second term is the self-interaction
potential energy. A finite H and a finite Sp imply a finite self-interaction potential∫

ρσ+1 dx < ∞. (22)

Let [0, z∗) be the maximal interval on which the regular solution is defined with the above
properties. When z∗ < ∞ then the solution is said to develop finite time singularity.

3.4. Energy law

Next, we consider the evolution of the Hamiltonian H and the variance Vx . Let us first note
the result of Uγ applied to the quadratic polynomials.

Uγ x = 0 (23)

Uγ p = i
∫

eiq·xqÛ (dq) = ∇xU (24)
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Uγ |x|2 = 0 (25)

Uγ x · p = i
∫

eiq·xx · qÛ (dq) = x · ∇xU (26)

Uγ |p|2 = i
∫

eiq·x2p · qÛ (dq) = 2p · ∇xU. (27)

It is noteworthy that the results of the calculation are independent of γ � 0 and identical to
those for γ = 0 (see more on this in the conclusion).

Consider the mean dynamics for

x̄ =
∫

xW dx dp, p̄ =
∫

pW dx dp (28)

with the mean Hamiltonian defined as

H̄ = 1
2 |p̄|2. (29)

Using the above and integrating by parts we obtain the following,

∂

∂z
p̄ =

∫
LpW dx dp

∂

∂z
Vp =

∫
∇xU · pW dx dp +

∫
L|p|2W dp dx

∂

∂z

g

σ + 1

∫
ρσ+1 dx =

∫
∇xU · pWdp dx

and hence
∂

∂z
H̄ = p̄ ·

∫
LpW dx dp (30)

∂

∂z
H =

∫
L|p|2W dp dx (31)

which will take a more explicit form once we calculate Lp,L|p|2 with L of each case.
In the following sections, we first derive the variance identities for equation (20) in the

longitudinal case (regime (a)) and then the transverse case (regime (b)).
Before ending this section let us state some elementary inequalities which will be useful

later. An application of the Cauchy–Schwartz inequality and the marginal positivity (9), (10)
to the first moments x̄, p̄ then leads to

|x̄|2 � Sx, |p̄|2 � Sp. (32)

Furthermore, by using the mixed-state structure (8) in estimating the cross moment

Sxp =
∫

x · pW dx dp (33)

one deduces that

S2
xp � SxSp < ∞. (34)

Likewise the covariance

Vxp =
∫

(x − x̄) · (p − p̄)W dx dp = Sxp − x̄ · p̄

can be bounded by Vx and Vp as

V 2
xp � VxVp. (35)
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4. The longitudinal case

4.1. Variance identities

Here we extend the classical variance identities (Virial theorem) to the phase-space
models (20).

We have the following simple calculations:

Lx = 0

Lp = 2π

∫
�(0, p − q)(p − q) dq = 0 (by (7))

L|x|2 = 0

Lx · p = x · 2π

∫
�(0, p − q)(p − q) dq = 0 (by (7)) (36)

L|p|2 = −2π

∫
�(0, p − q)

[|p|2 − |q|2] dq

= −2π

∫
�(0, q)(2p − q) · q dq

= 2π

∫
�(0, q)|q|2 dq ≡ R.

We have used the linear Boltzmann operator L in the above calculation; the same result holds
for the linear diffusion operator L for which case

R = 2 × trace(D),

where the diffusion matrix D is given by (17). We shall use the above identities to perform
integrating by parts in the derivation of the variance identities.

The evolution of the mean position x̄ and momentum p̄ is then given by

∂

∂z
x̄ = p̄

∂

∂z
p̄ = gσ

σ + 1

∫
∇xρ

σ+1 dx = 0

as a consequence the mean Hamiltonian H̄ is invariant.
The evolution of the variance Vx is given by

∂

∂z
Vx = 2Vxp.

Differentiating Sxp we obtain

∂

∂z
Sxp = Sp − g dσ

σ + 1

∫
ρσ+1 dx dp

Hence the second derivative of Vx becomes

∂2

∂z2
Vx = 4(H − H̄ ) +

2(2 − dσ)g

σ + 1

∫
ρσ+1 dx. (37)

An alternative expression for the variance identity is

∂2

∂z2
Vx = 2 dσ(H − H̄ ) + (2 − dσ)Vp. (38)

Both forms (37) and (38) will be used to obtain dispersion estimates below.
A slightly different version of the variance identities can be analogously derived:

∂2

∂z2
Sx = 4H +

2(2 − dσ)g

σ + 1

∫
ρσ+1 dx. (39)
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∂2

∂z2
Sx = 2 dσH + (2 − dσ)Sp. (40)

As we will see below, both (37)–(38) and (39)–(40) hold for the transverse case as well as the
longitudinal case. What is interesting about (39)–(40) is that they coincide with the ensemble-
averaged variance identities derived rigorously in [8] for the case of the white-noise-in-z
potential. On the other hand, (37)–(38) cannot be true for the white-noise (in z or x) case even
after ensemble-averaging because E|x̄|2 and E|p̄|2 involve the second moment of W . In the
following we will use (37)–(38) exclusively since they give a slightly better estimate for the
dispersion rate than (39)–(40).

4.2. Dispersion rate

Although the medium is lossless, reflected in the fact that the total mass N = 1 is conserved,
but the Hamiltonian is not conserved by the evolution since the scattering with the random
potential is not elastic. Indeed, its rate of change is

∂

∂z
H = R, H(z) = H(0) + Rz (41)

due to the diffusion-like spread in the momentum p.
In the critical case dσ = 2, we have the exact result

∂2

∂z2
Vx = 4H − 2|p̄|2 = 4(H(0) − H̄ ) + 4Rz

before any singularity formation and hence the following.

Proposition 1. If dσ = 2 or g = 0, then

Vx(z) = Vx(0) + 2Vxp(0)z + 2(H(0) − H̄ )z2 +
2R

3
z3, z ∈ [0, z∗). (42)

The analogous result (Vx ∼ z3) for the linear Schrödinger equation (d = 1, g = 0) with a
random potential has been proved previously [2, 5].

We have from (37) that

∂2

∂z2
Vx = 4H +

(4 − 2 dσ)g

σ + 1

∫
ρσ+1 dx − 2|p̄|2 (43)

and hence

∂2

∂z2
Vx � 4H − 4H̄ = 4(H(0) + Rz) − 4H̄ , for g(2 − dσ) < 0

∂2

∂z2
Vx � 4H − 4H̄ = 4(H(0) + Rz) − 4H̄ , for g(2 − dσ) � 0.

On the other hand, from (38) we obtain for any g

∂2

∂z2
Vx � 2 dσ(H − H̄ ), for 2 − dσ � 0

∂2

∂z2
Vx � 2 dσ(H − H̄ ), for 2 − dσ � 0.

Integrating the above inequalities twice, we obtain the following.
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Proposition 2 (attractive interaction). For g � 0, we have

Vx(z) � Vx(0) + 2Vxp(0)z + dσ(H(0) − H̄ )z2 +
dσ

3
Rz3, for 2 � dσ

Vx(z) � Vx(0) + 2Vxp(0)z + dσ(H(0) − H̄ )z2 +
dσ

3
Rz3, for 2 � dσ

for all z ∈ [0, z∗).

Proposition 3 (repulsive interaction). Assume g < 0 (hence H � 0). Then

Vx(z) � Vx(0) + 2Vxp(0)z + (dσ ∨ 2)[H(0) − H̄ ]z2 +
dσ ∨ 2

3
Rz3

and

Vx(z) � Vx(0) + 2Vxp(0)z + (dσ ∧ 2)[H(0) − H̄ ]z2 +
dσ ∧ 2

3
Rz3 (44)

for z ∈ [0, z∗).

4.3. Singularity formation

Finite-time singularity for the critical or supercritical NLS (dσ � 2) in the absence of an
external potential is a well-known effect [18]. In this case the singularity is the blow-up type
Vp, ‖ρ‖σ+1 → ∞. Here we take (20) as a model equation to gain some insight into singularity
formation in the presence of a rapidly fluctuating random potential.

First we consider the self-focusing case g � 0. For dσ � 2 one can bound Vx as

Vx(z) � Vx(0) + 2Vxp(0)z + dσ(H(0) − H̄ )z2 +
dσR

3
z3 ≡ F(z) (45)

and looks for the situation when F(z) vanishes.
The sufficient conditions for F(z) to vanish at a finite positive z are that F(z) takes a

non-positive value F(z0) � 0 at its local minimum point z0 > 0. The local minimum point z0

is given by

z0 =
H̄ − H(0) +

√
(H(0) − H̄ )2 − 2RVxp(0)/(dσ)

R
. (46)

Therefore we are led to the singularity conditions for g � 0.

Proposition 4. For dσ � 2, g > 0, the regular solution of the nonlinear kinetic equation (20)
with the longitudinal randomness develops singularity at a finite time z∗ � z0 given by (46)
under the condition F(z0) � 0 and either one of the following conditions:

Vxp(0) < 0 (47)

Vxp(0) > 0, H(0) < H̄ −
√

2RVxp(0)

dσ
. (48)

Remark 1. Clearly, the condition F(z0) � 0 requires H(0) to be sufficiently below H̄ by
allowing the potential energy

− g

σ + 1

∫
ρσ+1 dx dp

at z = 0 to be sufficiently negative.
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In the linear or self-defocusing case g � 0 the right-hand side of (42) or (44) can be
shown to be always positive by using the inequality

2|Vxp| � Vx + Vp,

cf (35).

Condition (48) suggests that the small-scale random fluctuations raise the energy barrier
for singularity formation since H(0) < H̄ leads to finite-time singularity in the absence of
random potential. This is different from the result of [3] for white-noise-in-z potentials which
are smooth and slowly fluctuating in x. Such random potentials tend to trigger wave collapse.

Next we will follow the argument of [11] to show more explicitly the blow-up mechanism
in the case with the supercritical, self-focusing nonlinearity and give a sharper bound on z∗
under certain circumstances.

Proposition 5. Suppose dσ > 2, g > 0. Then under conditions (47),

H(z0) = H(0) + Rz0 � 0 (49)

with z0 given by (46), V ′
x as well as Vp blow up at a finite time z∗ where

z∗ � z0 ∧ 2Vx(0)

Vxp(0)(2 − dσ)
.

Let us give the argument below. Since blow-up is a local phenomenon, Vx is a poor
indicator of its occurrence. To this end a more useful object to consider is Vp.

From (38) it follows that

∂2

∂z2
Vx � (2 − dσ)Vp < 0, z < z∗. (50)

Hence V ′
x(z) is a negative, decreasing function for z < z∗. Also by the Cauchy-Schwartz

inequality, we get

0 � V 2
xp � VxVp � Vx(0)Vp, 0 < z < z∗ (51)

and hence

Vp �
V 2

xp

Vx(0)
. (52)

Let A(z) = −V ′
x(z) > 0, z < z∗. We have from (38) and (51) the differential inequality

∂

∂z
A � CA2, C = dσ − 2

4Vx(0)
> 0 (53)

which yields the estimate

A(z) � A(0)

1 − zCA(0)
, z <

1

CA(0)

and thus the blow-up of −V ′
x(z) at a finite time. This along with (52) then (49) implies the

divergence of Vp at a finite time

lim
z→z∗

Vp(z) = ∞
with

z∗ � 1

CA(0)
= 2Vx(0)

Vxp(0)(2 − dσ)
. (54)

For high power dσ � 2, (54) is a better upper bound for z∗ than z0 given by (46).
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The preceding argument demonstrates clearly the blow-up mechanism, namely the
quadratic growth property (53) as well as giving a sharper bound on the blow-up time for
large dσ .

5. The transverse case

The scattering operator L in this case corresponds to elastic scattering, instead of the inelastic
scattering of the longitudinal case. This affects the results of L when applied to quadratic
polynomials:

Lx = 0 (55)

Lp = 2π

∫
δ

( |p|2 − |q|2
2

) (∫
�(w, p − q) dw

)
(p − q) dq = 0 (56)

L|x|2 = 0 (57)

Lx · p = 0 (58)

L|p|2 = −2π

∫
δ

( |p|2 − |q|2
2

)( ∫
�(w, p − q) dw

)(|p|2 − |q|2) dq = 0. (59)

The same results can be easily checked to hold for the diffusion operator L with the diffusion
matrix (18). The main difference between the transverse and the longitudinal cases is that
between (59) and (36).

5.1. Rate of dispersion

The variance identities (37)–(38) and (39)–(40) still hold in the transverse case as can be
derived by using (55)–(59) and other relations as in the longitudinal case. The difference from
the longitudinal case is that the Hamiltonian is invariant

∂

∂z
H = 0

due to (59).
By the same argument as in the longitudinal case we have the following analogous

estimates.

Proposition 6. If dσ = 2 or g = 0, then

Vx(z) = Vx(0) + 2Vxp(0)z + 2(H(0) − H̄ )z2, z ∈ [0, z∗). (60)

Proposition 7 (attractive interaction). The following estimates hold for g � 0 and z ∈ [0, z∗):

Vx(z) � Vx(0) + 2Vxp(0)z + dσ(H − H̄ )z2, for 2 � dσ

Vx(z) � Vx(0) + 2Vxp(0)z + dσ(H − H̄ )z2, for 2 � dσ.

Proposition 8 (repulsive interaction). Assume g < 0 (hence H � 0). Then for z ∈ [0, z∗)

Vx(0) + 2Vxp(0)z + (dσ ∧ 2)[H− H̄ ]z2

� Vx(z) � Vx(0) + 2Vxp(0)z + (dσ ∨ 2)[H− H̄ ]z2. (61)

From these estimates we see that a ballistic kind of motion takes place in the transverse case.
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5.2. Singularity

By finding the zeros of the upper bounds in proposition 7 we can derive the conditions for
singularity formation. As in the longitudinal case, for g � 0, (60) and the left-hand side of
(61) are always positive.

Proposition 9. For g > 0, dσ � 2, the regular solution of the nonlinear kinetic equation (20)
with the transverse randomness develops singularity in a finite time z∗ < ∞ under either of
the following conditions

H < H̄ (62)

or

Vxp(0) < 0, H̄ � H � H̄ + |Vxp(0)|2/(dσVx(0)). (63)

Remark 2. It is easy to see that the singularity time z∗ is bounded from above by

z0 =
−Vxp(0) +

√
|Vxp(0)|2 − dσVx(0)(H − H̄ )

dσ(H − H̄ )
(64)

under condition (62) and by

z0 =
−Vxp(0) −

√
|Vxp(0)|2 − dσVx(0)(H − H̄ )

dσ(H − H̄ )

under condition (63).

The preceding singularity conditions are identical to those for the homogeneous (super)-critical
NLS equation [18]. This is already suggested by the previous result [10] where (62) is shown
to be the instability condition for the diffusion approximation of the kinetic equation (20) with
the kernel (14).

With more stringent conditions one can demonstrate more explicitly the phenomena of
wave collapse. Let us state the result.

Proposition 10. Suppose dσ > 2, g > 0. Then under the conditions

H < H̄,

V ′
x as well as Vp blow up at a finite time z∗ < z0.

Let us sketch the argument below. From (38) it follows that

∂2

∂z2
Vx � (2 − dσ)Vp < 0, z < z∗. (65)

Since V ′
x(z) is a decreasing function and becomes negative after a finite time z̄ when Vx(z)

achieves its maximum V̄x .
Again for A(z) = −V ′

x(z) > 0, z > z̄ we have from (65) and (51) the differential
inequality

∂

∂z
A � CA2, C = dσ − 2

4Vx(z̄)
> 0, z > z̄.
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6. Conclusion

We have derived several kinetic equations to model the large scale, low Fresnel number
behaviour of the generalized NLS equation with a rapidly fluctuating random potential based
on the rigorous theory [7, 9] for the linear case. This is the so-called radiative transfer theory.
The main hypothesis is that the small-scale fluctuations induced by the random medium shows
up only in the phase of � but not in the modulus |�|, namely ρ = |�|2 converges strongly in
the scaling limit. As a consequence, the low Fresnel number waves interacting with a rapidly
oscillating potential give rise to, in the radiative transfer scaling (11), a self-averaging limit
of a deterministic kinetic equation with a scattering operator. The scattering operator in the
kinetic equation may be a Boltzmann-type operator or a Fokker–Planck operator depending on
how small the Fresnel number is. From these kinetic equations we have derived the variance
identities in order to shed light on two problems: the rate of dispersion and the singularity
formation.

What is important for our investigation is the structure of the scattering kernel in the
Boltzmann operator or the diffusion matrix of the Fokker–Planck operator. We have considered
two types of structures: the longitudinal case when the random potential fluctuates more rapidly
in the longitudinal direction and the transverse case when the random potential fluctuates more
rapidly in the transverse direction.

For the problem of dispersion, roughly speaking, we have shown that in the longitudinal
case the spread scales like z3/2, whereas in the transverse case the spread scales like z.

For the problem of singularity, we have shown by analysing the variance identities that
in the longitudinal case the random scattering tends to boost the energy of the system and
therefore raise the energy barrier to singularity whereas in the transverse case the singularity
conditions remain the same as those for the homogeneous NLS equation with critical or
supercritical self-focusing nonlinearity.

Finally, the variance identities (39)–(40) can be rigorously derived for the case of the
white-noise-in-z potential after ensemble averaging, [8]. This is consistent with the assumed
self-averaging property of the radiative transfer scaling limit. It would be of great interest to
know if the variance identities (39)–(40) for the transverse case can be derived for the case of
the white-noise-in-x potential.
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